Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(14): 2912-2924.e5, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37379842

RESUMO

Internal predictions about the sensory consequences of self-motion, encoded by corollary discharge, are ubiquitous in the animal kingdom, including for fruit flies, dragonflies, and humans. In contrast, predicting the future location of an independently moving external target requires an internal model. With the use of internal models for predictive gaze control, vertebrate predatory species compensate for their sluggish visual systems and long sensorimotor latencies. This ability is crucial for the timely and accurate decisions that underpin a successful attack. Here, we directly demonstrate that the robber fly Laphria saffrana, a specialized beetle predator, also uses predictive gaze control when head tracking potential prey. Laphria uses this predictive ability to perform the difficult categorization and perceptual decision task of differentiating a beetle from other flying insects with a low spatial resolution retina. Specifically, we show that (1) this predictive behavior is part of a saccade-and-fixate strategy, (2) the relative target angular position and velocity, acquired during fixation, inform the subsequent predictive saccade, and (3) the predictive saccade provides Laphria with additional fixation time to sample the frequency of the prey's specular wing reflections. We also demonstrate that Laphria uses such wing reflections as a proxy for the wingbeat frequency of the potential prey and that consecutively flashing LEDs to produce apparent motion elicits attacks when the LED flicker frequency matches that of the beetle's wingbeat cycle.


Assuntos
Besouros , Crocus , Odonatos , Humanos , Animais , Movimentos Sacádicos , Tomada de Decisões
2.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36721951

RESUMO

The evolutionary history of visual genes in Coleoptera differs from other well-studied insect orders, such as Lepidoptera and Diptera, as beetles have lost the widely conserved short-wavelength (SW) insect opsin gene that typically underpins sensitivity to blue light (∼440 nm). Duplications of the ancestral ultraviolet (UV) and long-wavelength (LW) opsins have occurred in many beetle lineages and have been proposed as an evolutionary route for expanded spectral sensitivity. The jewel beetles (Buprestidae) are a highly ecologically diverse and colorful family of beetles that use color cues for mate and host detection. In addition, there is evidence that buprestids have complex spectral sensitivity with up to five photoreceptor classes. Previous work suggested that opsin duplication and subfunctionalization of the two ancestral buprestid opsins, UV and LW, has expanded sensitivity to different regions of the light spectrum, but this has not yet been tested. We show that both duplications are likely unique to Buprestidae or the wider superfamily of Buprestoidea. To directly test photopigment sensitivity, we expressed buprestid opsins from two Chrysochroa species in Drosophila melanogaster and functionally characterized each photopigment type as UV- (356-357 nm), blue- (431-442 nm), green- (507-509 nm), and orange-sensitive (572-584 nm). As these novel opsin duplicates result in significantly shifted spectral sensitivities from the ancestral copies, we explored spectral tuning at four candidate sites using site-directed mutagenesis. This is the first study to directly test opsin spectral tuning mechanisms in the diverse and specious beetles.


Assuntos
Besouros , Opsinas , Animais , Opsinas/genética , Besouros/genética , Drosophila melanogaster/genética , Opsinas de Bastonetes/genética , Insetos , Filogenia
3.
J Exp Biol ; 226(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36695720

RESUMO

The ability to visualize small moving objects is vital for the survival of many animals, as these could represent predators or prey. For example, predatory insects, including dragonflies, robber flies and killer flies, perform elegant, high-speed pursuits of both biological and artificial targets. Many non-predatory insects, including male hoverflies and blowflies, also pursue targets during territorial or courtship interactions. To date, most hoverfly pursuits have been studied outdoors. To investigate hoverfly (Eristalis tenax) pursuits under more controlled settings, we constructed an indoor arena that was large enough to encourage naturalistic behavior. We presented artificial beads of different sizes, moving at different speeds, and filmed pursuits with two cameras, allowing subsequent 3D reconstruction of the hoverfly and bead position as a function of time. We show that male E. tenax hoverflies are unlikely to use strict heuristic rules based on angular size or speed to determine when to start pursuit, at least in our indoor setting. We found that hoverflies pursued faster beads when the trajectory involved flying downwards towards the bead. Furthermore, we show that target pursuit behavior can be broken down into two stages. In the first stage, the hoverfly attempts to rapidly decreases the distance to the target by intercepting it at high speed. During the second stage, the hoverfly's forward speed is correlated with the speed of the bead, so that the hoverfly remains close, but without catching it. This may be similar to dragonfly shadowing behavior, previously coined 'motion camouflage'.


Assuntos
Dípteros , Odonatos , Animais , Masculino , Insetos , Territorialidade , Comportamento Predatório
5.
Curr Biol ; 32(21): 4727-4733.e3, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36130600

RESUMO

Octopus' limb hyper-redundancy complicates traditional motor control system theory due to its extensive sensory inputs, subsequent decision-making, and arm coordination. Octopuses are thought to reduce flexibility control complexity by relying on highly stereotypical motor primitives (e.g., reaching1,2,3,4 and crawling5) and multi-level processes to coordinate movement,6,7 utilizing extensive peripheral nervous system (PNS) processing.2,8,9 Division of labor along the anterior-posterior axis10 and limb specialization of the four anterior arms in T-maze food retrieval11 further simplify control. However, specific arm recruitment and coordination during visually guided reaching behavior remains poorly understood. Here, we investigated visually evoked Octopus bimaculoides' prey capture capabilities12,13 by eliciting and examining prey-specific arm recruitment. When striking crabs, octopuses preferred synchronous arm recruitment, while sequential arm recruitment with a characteristic swaying movement is employed for shrimp. Such behavioral selection aligns with specific prey escape strategies and the octopus' flexible arm biomechanical constraints. Although side bias existed, we found significant bilateral symmetry, with one side being functionally a mirror of the other rather than anterior arm use being functionally equal and differing to posterior arm use. Among arms, the second limb is unequivocally dominant for goal-directed monocularly driven prey capture. Although the eight arms share gross anatomy and are considered equipotential,10,14 such arm use for specific actions could reflect subtle evolutionary adaptations. Finally, we quantitatively show, corroborating earlier observations,10,15 that octopuses employ a dimension reduction strategy by actively deciding to recruit adjacent arms over other available arms during either sequential or synchronous visually evoked prey attack.


Assuntos
Octopodiformes , Animais , Octopodiformes/fisiologia , Movimento/fisiologia , Extremidades/fisiologia , Adaptação Fisiológica
6.
J Exp Biol ; 225(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168251

RESUMO

The miniature robber fly Holcocephala fusca intercepts its targets with behaviour that is approximated by the proportional navigation guidance law. During predatory trials, we challenged the interception of H. fusca performance by placing a large object in its potential flight path. In response, H. fusca deviated from the path predicted by pure proportional navigation, but in many cases still eventually contacted the target. We show that such flight deviations can be explained as the output of two competing navigational systems: pure-proportional navigation and a simple obstacle avoidance algorithm. Obstacle avoidance by H. fusca is here described by a simple feedback loop that uses the visual expansion of the approaching obstacle to mediate the magnitude of the turning-away response. We name the integration of this steering law with proportional navigation 'combined guidance'. The results demonstrate that predatory intent does not operate a monopoly on the fly's steering when attacking a target, and that simple guidance combinations can explain obstacle avoidance during interceptive tasks.


Assuntos
Voo Animal , Comportamento Predatório , Animais , Voo Animal/fisiologia
7.
Sci Rep ; 10(1): 18242, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106518

RESUMO

Drosophila melanogaster has long been a popular model insect species, due in large part to the availability of genetic tools and is fast becoming the model for insect colour vision. Key to understanding colour reception in Drosophila is in-depth knowledge of spectral inputs and downstream neural processing. While recent studies have sparked renewed interest in colour processing in Drosophila, photoreceptor spectral sensitivity measurements have yet to be carried out in vivo. We have fully characterised the spectral input to the motion and colour vision pathways, and directly measured the effects of spectral modulating factors, screening pigment density and carotenoid-based ocular pigments. All receptor sensitivities had significant shifts in spectral sensitivity compared to previous measurements. Notably, the spectral range of the Rh6 visual pigment is substantially broadened and its peak sensitivity is shifted by 92 nm from 508 to 600 nm. We show that this deviation can be explained by transmission of long wavelengths through the red screening pigment and by the presence of the blue-absorbing filter in the R7y receptors. Further, we tested direct interactions between inner and outer photoreceptors using selective recovery of activity in photoreceptor pairs.


Assuntos
Percepção de Cores/fisiologia , Drosophila melanogaster/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Visão Ocular/fisiologia , Animais , Drosophila melanogaster/metabolismo , Olho/metabolismo , Pigmentos da Retina/fisiologia
8.
Front Neurosci ; 14: 816, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903680

RESUMO

Genes for endoplasmic reticulum (ER)-shaping proteins are among the most commonly mutated in hereditary spastic paraplegia (HSP). Mutation of these genes in model organisms can lead to disruption of the ER network. To investigate how the physiological roles of the ER might be affected by such disruption, we developed tools to interrogate its Ca2+ signaling function. We generated GAL4-driven Ca2+ sensors targeted to the ER lumen, to record ER Ca2+ fluxes in identified Drosophila neurons. Using GAL4 lines specific for Type Ib or Type Is larval motor neurons, we compared the responses of different lumenal indicators to electrical stimulation, in axons and presynaptic terminals. The most effective sensor, ER-GCaMP6-210, had a Ca2+ affinity close to the expected ER lumenal concentration. Repetitive nerve stimulation generally showed a transient increase of lumenal Ca2+ in both the axon and presynaptic terminals. Mutants lacking neuronal reticulon and REEP proteins, homologs of human HSP proteins, showed a larger ER lumenal evoked response compared to wild type; we propose mechanisms by which this phenotype could lead to neuronal dysfunction or degeneration. Our lines are useful additions to a Drosophila Ca2+ imaging toolkit, to explore the physiological roles of ER, and its pathophysiological roles in HSP and in axon degeneration more broadly.

9.
Sci Rep ; 10(1): 15681, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973185

RESUMO

Motion vision has been extensively characterised in Drosophila melanogaster, but substantially less is known about how flies process colour, or how spectral information affects other visual modalities. To accurately dissect the components of the early visual system responsible for processing colour, we developed a versatile visual stimulation setup to probe combined spatial, temporal and spectral response properties. Using flies expressing neural activity indicators, we tracked visual responses in the medulla, the second visual neuropil, to a projected colour stimulus. The introduction of custom bandpass optical filters enables simultaneous two-photon imaging and visual stimulation over a large range of wavelengths without compromising the temporal stimulation rate. With monochromator-produced light, any spectral bandwidth and centre wavelength from 390 to 730 nm can be selected to produce a narrow spectral hue. A specialised screen material scatters each band of light across the visible spectrum equally at all locations of the screen, thus enabling presentation of spatially structured stimuli. We show layer-specific shifts of spectral response properties in the medulla correlating with projection regions of photoreceptor terminals.


Assuntos
Drosophila melanogaster , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Estimulação Luminosa , Animais , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação
10.
Curr Biol ; 30(4): 645-656.e4, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31956029

RESUMO

Akin to all damselflies, Calopteryx (family Calopterygidae), commonly known as jewel wings or demoiselles, possess dichoptic (separated) eyes with overlapping visual fields of view. In contrast, many dragonfly species possess holoptic (dorsally fused) eyes with limited binocular overlap. We have here compared the neuronal correlates of target tracking between damselfly and dragonfly sister lineages and linked these changes in visual overlap to pre-motor neural adaptations. Although dragonflies attack prey dorsally, we show that demoiselles attack prey frontally. We identify demoiselle target-selective descending neurons (TSDNs) with matching frontal visual receptive fields, anatomically and functionally homologous to the dorsally positioned dragonfly TSDNs. By manipulating visual input using eyepatches and prisms, we show that moving target information at the pre-motor level depends on binocular summation in demoiselles. Consequently, demoiselles encode directional information in a binocularly fused frame of reference such that information of a target moving toward the midline in the left eye is fused with information of the target moving away from the midline in the right eye. This contrasts with dragonfly TSDNs, where receptive fields possess a sharp midline boundary, confining responses to a single visual hemifield in a sagittal frame of reference (i.e., relative to the midline). Our results indicate that, although TSDNs are conserved across Odonata, their neural inputs, and thus the upstream organization of the target tracking system, differ significantly and match divergence in eye design and predatory strategies. VIDEO ABSTRACT.


Assuntos
Voo Animal , Odonatos/fisiologia , Comportamento Predatório/fisiologia , Campos Visuais/fisiologia , Animais
11.
Sci Adv ; 6(2): eaay6036, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31934631

RESUMO

The camera-type eyes of vertebrates and cephalopods exhibit remarkable convergence, but it is currently unknown whether the mechanisms for visual information processing in these brains, which exhibit wildly disparate architecture, are also shared. To investigate stereopsis in a cephalopod species, we affixed "anaglyph" glasses to cuttlefish and used a three-dimensional perception paradigm. We show that (i) cuttlefish have also evolved stereopsis (i.e., the ability to extract depth information from the disparity between left and right visual fields); (ii) when stereopsis information is intact, the time and distance covered before striking at a target are shorter; (iii) stereopsis in cuttlefish works differently to vertebrates, as cuttlefish can extract stereopsis cues from anticorrelated stimuli. These findings demonstrate that although there is convergent evolution in depth computation, cuttlefish stereopsis is likely afforded by a different algorithm than in humans, and not just a different implementation.


Assuntos
Decapodiformes/fisiologia , Percepção de Profundidade/fisiologia , Comportamento Predatório/fisiologia , Animais , Movimentos Oculares/fisiologia , Imageamento Tridimensional , Visão Binocular
12.
Curr Biol ; 29(18): 3101-3108.e4, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31474538

RESUMO

Both vertebrates and invertebrates commonly exploit photonic structures adjacent to their photoreceptors for visual benefits. For example, use of a reflecting structure (tapetum) behind the retina increases photon capture, enhancing vision in dim light [1-5]. Colored filters positioned lateral or distal to a photoreceptive unit may also be used to tune spectral sensitivity by selective transmission of wavelengths not absorbed or scattered by the filters [6-8]. Here we describe a new category of biological optical filter that acts simultaneously as both a transmissive spectral filter and narrowband reflector. Discovered in the larval eyes of only one family of mantis shrimp (stomatopod) crustaceans (Nannosquillidae), each crystalline structure bisects the photoreceptive rhabdom into two tiers and contains an ordered array of membrane-bound vesicles with sub-wavelength diameters of 153 ± 5 nm. Axial illumination of the intrarhabdomal structural reflector (ISR) in vivo produces a narrow band of yellow reflectance (mean peak reflectivity, 572 ± 18 nm). The ISR is similar to several synthetic devices, such as bandgap filters, laser mirrors, and (in particular) fiber Bragg gratings used in optical sensors for a wide range of industries. To our knowledge, the stomatopod larval ISR is the first example of a naturally occurring analog to these human-made devices. Considering what is known about these animals' visual ecology, we propose that these reflecting filters may help improve the detection of pelagic bioluminescence in shallow water at night. VIDEO ABSTRACT.


Assuntos
Células Fotorreceptoras/fisiologia , Retina/fisiologia , Animais , Olho Composto de Artrópodes/anatomia & histologia , Olho Composto de Artrópodes/fisiologia , Crustáceos , Larva/metabolismo , Larva/fisiologia , Luz , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Retina/patologia , Raios Ultravioleta , Visão Ocular/fisiologia
14.
J R Soc Interface ; 15(147)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333249

RESUMO

When aiming to capture a fast-moving target, animals can follow it until they catch up, or try to intercept it. In principle, interception is the more complicated strategy, but also more energy efficient. To study whether simple feedback controllers can explain interception behaviours by animals with miniature brains, we have reconstructed and studied the predatory flights of the robber fly Holcocephala fusca and killer fly Coenosia attenuata Although both species catch other aerial arthropods out of the air, Holcocephala contrasts prey against the open sky, while Coenosia hunts against clutter and at much closer range. Thus, their solutions to this target catching task may differ significantly. We reconstructed in three dimensions the flight trajectories of these two species and those of the presented targets they were attempting to intercept. We then tested their recorded performances against simulations. We found that both species intercept targets on near time-optimal courses. To investigate the guidance laws that could underlie this behaviour, we tested three alternative control systems (pure pursuit, deviated pursuit and proportional navigation). Only proportional navigation explains the timing and magnitude of fly steering responses, but with differing gain constants and delays for each fly species. Holcocephala uses a dimensionless navigational constant of N ≈ 3 with a time delay of ≈28 ms to intercept targets over a comparatively long range. This constant is optimal, as it minimizes the control effort required to hit the target. In contrast, Coenosia uses a constant of N ≈ 1.5 with a time delay of ≈18 ms, this setting may allow Coenosia to cope with the extremely high line-of-sight rotation rates, which are due to close target proximity, and thus prevent overcompensation of steering. This is the first clear evidence of interception supported by proportional navigation in insects. This work also demonstrates how by setting different gains and delays, the same simple feedback controller can yield the necessary performance in two different environments.


Assuntos
Dípteros/fisiologia , Voo Animal/fisiologia , Comportamento Predatório/fisiologia , Animais , Modelos Biológicos
15.
iScience ; 1: 24-34, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-30058000

RESUMO

The color and pattern changing abilities of octopus, squid, and cuttlefish via chromatophore neuromuscular organs are unparalleled. Cuttlefish and octopuses also have a unique muscular hydrostat system in their skin. When this system is expressed, dermal bumps called papillae disrupt body shape and imitate the fine texture of surrounding objects, yet the control system is unknown. Here we report for papillae: (1) the motoneurons and the neurotransmitters that control activation and relaxation, (2) a physiologically fast expression and retraction system, and (3) a complex of smooth and striated muscles that enables long-term expression of papillae through sustained tension in the absence of neural input. The neural circuits controlling acute shape-shifting skin papillae in cuttlefish show homology to the iridescence circuits in squids. The sustained tension in papillary muscles for long-term camouflage utilizes muscle heterogeneity and points toward the existence of a "catch-like" mechanism that would reduce the necessary energy expenditure.

16.
J Exp Biol ; 221(Pt 10)2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29720383

RESUMO

On warm sunny days, female hoverflies are often observed feeding from a wide range of wild and cultivated flowers. In doing so, hoverflies serve a vital role as alternative pollinators, and are suggested to be the most important pollinators after bees and bumblebees. Unless the flower hoverflies are feeding from is large, they do not readily share the space with other insects, but instead opt to leave if another insect approaches. We used high-speed videography followed by 3D reconstruction of flight trajectories to quantify how female Eristalis hoverflies respond to approaching bees, wasps and two different hoverfly species. We found that, in 94% of the interactions, the occupant female left the flower when approached by another insect. We found that compared with spontaneous take-offs, the occupant hoverfly's escape response was performed at ∼3 times higher speed (spontaneous take-off at 0.2±0.05 m s-1 compared with 0.55±0.08 m s-1 when approached by another Eristalis). The hoverflies tended to take off upward and forward, while taking the incomer's approach angle into account. Intriguingly, we found that, when approached by wasps, the occupant Eristalis took off at a higher speed and when the wasp was further away. This suggests that feeding hoverflies may be able to distinguish these predators, demanding impressive visual capabilities. Our results, including quantification of the visual information available before occupant take-off, provide important insight into how freely behaving hoverflies perform escape responses from competitors and predators (e.g. wasps) in the wild.


Assuntos
Dípteros/fisiologia , Comportamento Alimentar , Visão Ocular , Animais , Abelhas , Feminino , Voo Animal , Flores , Comportamento Predatório , Gravação em Vídeo , Vespas
17.
Curr Biol ; 27(6): 854-859, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28286000

RESUMO

Our visual system allows us to rapidly identify and intercept a moving object. When this object is far away, we base the trajectory on the target's location relative to an external frame of reference [1]. This process forms the basis for the constant bearing angle (CBA) model, a reactive strategy that ensures interception since the bearing angle, formed between the line joining pursuer and target (called the range vector) and an external reference line, is held constant [2-4]. The CBA model may be a fundamental and widespread strategy, as it is also known to explain the interception trajectories of bats and fish [5, 6]. Here, we show that the aerial attack of the tiny robber fly Holcocephala fusca is consistent with the CBA model. In addition, Holcocephala fusca displays a novel proactive strategy, termed "lock-on" phase, embedded with the later part of the flight. We found the object detection threshold for this species to be 0.13°, enabled by an extremely specialized, forward pointing fovea (∼5 ommatidia wide, interommatidial angle Δφ = 0.28°, photoreceptor acceptance angle Δρ = 0.27°). This study furthers our understanding of the accurate performance that a miniature brain can achieve in highly demanding sensorimotor tasks and suggests the presence of equivalent mechanisms for target interception across a wide range of taxa. VIDEO ABSTRACT.


Assuntos
Dípteros/fisiologia , Percepção de Movimento , Acuidade Visual , Animais , Desempenho Psicomotor
19.
Brain Behav Evol ; 86(1): 28-37, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26398293

RESUMO

Predatory animals have evolved to optimally detect their prey using exquisite sensory systems such as vision, olfaction and hearing. It may not be so surprising that vertebrates, with large central nervous systems, excel at predatory behaviors. More striking is the fact that many tiny insects, with their miniscule brains and scaled down nerve cords, are also ferocious, highly successful predators. For predation, it is important to determine whether a prey is suitable before initiating pursuit. This is paramount since pursuing a prey that is too large to capture, subdue or dispatch will generate a substantial metabolic cost (in the form of muscle output) without any chance of metabolic gain (in the form of food). In addition, during all pursuits, the predator breaks its potential camouflage and thus runs the risk of becoming prey itself. Many insects use their eyes to initially detect and subsequently pursue prey. Dragonflies, which are extremely efficient predators, therefore have huge eyes with relatively high spatial resolution that allow efficient prey size estimation before initiating pursuit. However, much smaller insects, such as killer flies, also visualize and successfully pursue prey. This is an impressive behavior since the small size of the killer fly naturally limits the neural capacity and also the spatial resolution provided by the compound eye. Despite this, we here show that killer flies efficiently pursue natural (Drosophila melanogaster) and artificial (beads) prey. The natural pursuits are initiated at a distance of 7.9 ± 2.9 cm, which we show is too far away to allow for distance estimation using binocular disparities. Moreover, we show that rather than estimating absolute prey size prior to launching the attack, as dragonflies do, killer flies attack with high probability when the ratio of the prey's subtended retinal velocity and retinal size is 0.37. We also show that killer flies will respond to a stimulus of an angular size that is smaller than that of the photoreceptor acceptance angle, and that the predatory response is strongly modulated by the metabolic state. Our data thus provide an exciting example of a loosely designed matched filter to Drosophila, but one which will still generate successful pursuits of other suitable prey.


Assuntos
Tomada de Decisões/fisiologia , Insetos/fisiologia , Comportamento Predatório/fisiologia , Percepção de Tamanho/fisiologia , Comportamento Espacial , Animais , Estimulação Luminosa , Probabilidade , Fatores de Tempo , Percepção do Tempo , Gravação em Vídeo
20.
PLoS One ; 10(9): e0135381, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26351853

RESUMO

Cephalopods are famous for their ability to change color and pattern rapidly for signaling and camouflage. They have keen eyes and remarkable vision, made possible by photoreceptors in their retinas. External to the eyes, photoreceptors also exist in parolfactory vesicles and some light organs, where they function using a rhodopsin protein that is identical to that expressed in the retina. Furthermore, dermal chromatophore organs contain rhodopsin and other components of phototransduction (including retinochrome, a photoisomerase first found in the retina), suggesting that they are photoreceptive. In this study, we used a modified whole-mount immunohistochemical technique to explore rhodopsin and retinochrome expression in a number of tissues and organs in the longfin squid, Doryteuthis pealeii. We found that fin central muscles, hair cells (epithelial primary sensory neurons), arm axial ganglia, and sucker peduncle nerves all express rhodopsin and retinochrome proteins. Our findings indicate that these animals possess an unexpected diversity of extraocular photoreceptors and suggest that extraocular photoreception using visual opsins and visual phototransduction machinery is far more widespread throughout cephalopod tissues than previously recognized.


Assuntos
Decapodiformes/química , Decapodiformes/ultraestrutura , Células Fotorreceptoras/química , Pigmentos da Retina/análise , Rodopsina/análise , Nadadeiras de Animais/química , Nadadeiras de Animais/ultraestrutura , Animais , Gânglios/química , Gânglios/ultraestrutura , Imuno-Histoquímica , Células Fotorreceptoras/ultraestrutura , Retina/química , Retina/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...